
 Final Project: SuperTuxKart
 Ice-Hockey

 A I 394D: Deep Learning, Spring 2024, University of Texas at Austin

 Group 46
 27 April 2024

 Christopher Mitchell, Hui Chen, Omar Meziou, Samer Najjar

 1

 Introduction and Motivation
 Deep learning, as a profound advancement in artificial intelligence, provides the
 invaluable capability to automatically learn from experience without being explicitly
 programmed and self-optimizes as new experiences accumulate. In the context of
 gaming and game development, deep learning has the potential to greatly enhance the
 realism and responsiveness of non-human player behaviors. In this area, the
 open-source SuperTuxKart Ice-Hockey game has emerged as a prominent project and
 stands out in software and game development, especially in the field of deep learning.
 The SuperTuxKart Ice-Hockey game provides an opportunity for a wide range of
 computational experiments and model construction and also serves as a practical,
 engaging tool to illustrate principles in a context of accessible and robust machine
 learning.

 Integrating agent-based models with reinforcement learning (RL) in the context of
 SuperTuxKart Ice-Hockey provides an avenue for advancing AI in games. RL, a type of
 machine learning approach where agents learn to make decisions by interacting with an
 environment, fits well with the dynamic nature of games and adapts to the changes in
 the environment and components. In SuperTuxKart, agents (in this case, the characters
 controlled by a model) can be trained using RL to optimize the strategies, better handle
 the object, and dynamically adjust the tactics when taking the actions of other players
 into account. The approach of RL not only appreciates the complexity of the games and
 accounts for the realism of the opponents but also provides opportunities for strategy
 optimization for human players and enriches the game experience.

 Another strategy for training an agent to play a game is imitation learning (IL). While RL
 is more computationally expensive to conduct successfully, IL is a faster approach that
 relies on the decisions of an expert whose interactions with the environment are stored
 and then imitated [1]. To obtain training data, we can feed various states into the expert
 agent and use its subsequent actions as target behaviors for our model. We attempted
 at first to implement an RL model but ultimately settled on an IL model for its speed of
 training, as the computational needs of the RL model posed a significant impediment.

 Moreover, while one option is to choose a state-based agent that is trained on the
 evolving state, represented numerically, of various objects in the game, another option is
 to use an image-based agent that trains on images of the game and learns
 frame-by-frame what action to take based on the inferred state of the game (inferred
 visually through the image). We chose to implement a state-based agent as opposed to
 an image-based agent because the state agent would have direct access to the numeric
 state of the game, and would not have to infer them from an image, which would have

 2

 added an extra learning step and thus a degree of risk. A state agent also trains faster in
 theory, as image processing is substantially more computationally expensive.

 As such, our project is aimed at training an agent-based model using a single deep
 network, accounting for the states of the players' karts, the opponents’ karts, and the
 location of the puck, to outperform the agents coded by TAs and Professor in 2 vs 2
 tournaments.

 3

 Methodology

 Problem overview

 The challenge lies in programming these agents to effectively score, make strategic
 decisions in real-time, and collaborate with a teammate to outmaneuver the opposing
 team. Our solution, in short, is to use a state-based approach that learns state-action
 relationships, which enables us to capture the game state information that was not
 provided to the image agent.

 RL operates by an agent interacting within a given space and receiving rewards, without
 predefined strategies for actions. Instead, the agent gains knowledge through a process
 similar to "trial and error". RL is characterized by a loop of actions and feedback. An
 agent takes actions within an environment which then responds with feedback. This
 feedback influences the agent's policy and prompts further actions. This loop helps the
 agent progress from its starting point through numerous decisions, aiming to achieve or
 maximize a specific goal, with similarities to learning behaviors in humans (hinting at
 potential evolutionary benefits).

 The primary components of our project, including both the RL and IL paths, include the
 environment (the SuperTuxKart Ice-Hockey game itself), the agents (AI-controlled karts),
 the policy (the strategy the agents use to make decisions), and the reward function (the
 criteria for success and improvement).

 ● Environment : SuperTuxKart Ice-Hockey provides a dynamic and complex
 environment. This is characterized by the unpredictable agent movements and
 fluctuation of the puck trajectory. The opponent agents often present diverse
 behavioral patterns making it more difficult to anticipate their next move.
 Fluctuation of the puck trajectory also adds a significant layer of complexity to
 the environment. Since the objective of the game is to score as many goals with
 the puck as possible, its movement greatly impacts our agents’ decisions and
 movements within the environment. Furthermore, there is also complexity which
 resides in the dynamic nature of the arena as well. From arena layout to
 obstacles to opponent difficulty, each round of the game presents unique
 challenges and opportunities necessitating strategic decision-making and the
 ability to adapt to constantly changing scenarios.

 ● Agents : In our project, the agents are the AI-controlled karts tasked with racing
 against the Professor and TA agents. Each agent's behavior is dictated by a
 neural network that decides actions based on input states from the game.

 4

 ● Policy : As an algorithm that the agents use to determine the best actions based
 on the current state of the environment, the policy components involved in this
 project include velocity (speed + direction vectorized for 3 dimensional space),
 other actions, etc, to maximize the performance in games.

 ● Reward Function : This function measures how well an agent is performing. In the
 SuperTuxKart context, rewards are given for winning against opponents. The
 design of the reward function is critical as it directly influences learning
 outcomes by guiding the agents toward more effective strategies. In our project,
 the reward function was developed, but due to challenges in the implementation,
 it was ultimately not used. Despite this setback, we were still able to gain insights
 into our approach from this process and re-evaluate our strategy for agent
 development. While having a reward function is a critical aspect of a typical RL
 project, our focus on imitation learning allowed us to deviate from a reward
 system by primarily relying on expert demonstrations and capturing that into the
 overall learning process.

 By leveraging these components, our project aims to harness the power of RL and/or IL
 to create intelligent, competitive players. These agents are expected to not only
 compete effectively in the game but also continuously learn and adapt, improving their
 strategies based on the outcomes of their actions and the shifting dynamics of the
 game environment.

 Dataset

 SuperTuxKart features an AI for players to compete against, and there were a number of
 additional human-trained or designed agents provided to compete against with their
 own unique emphases in targeting and strategy. To obtain training data, we played each
 of these agents against each other, and saved the state of each frame of the match into
 a structured format. The states from all frames of a single match comprise a single
 training example. The state data contains information about the puck, the two players of
 Team 1, the two players of Team 2, and the goal lines. This information contains data
 points like coordinate locations as well as the actions of the players.

 Features and Targets

 For a given training example, the following features were either given directly by the
 state data or computed therefrom; features involving angles were computed from the
 Cartesian coordinates, using basic trigonometry:

 ● Given Features:
 ○ kart_front : The location coordinates of the front of the kart.

 5

 ○ kart_center : The location coordinates of the center of the kart.
 ○ kart_velocity : The velocity vector of the kart.
 ○ opponent_front : The location coordinates of the front of the opponent's

 kart.
 ○ opponent_center : The location coordinates of the center of the opponent's

 kart.
 ○ opponent_velocity : The velocity vector of the opponent's kart.
 ○ puck_center : The location of the puck.
 ○ their_goal_line_center : The center of the opponent's goal line.
 ○ our_goal_line_center : The center of the player's own goal line.

 ● Engineered Features:
 ○ kart_direction : A normalized vector derived from kart_front and

 kart_center showing the direction the kart is facing.
 ○ kart_angle : The angle of the kart with respect to some fixed axis,

 calculated using the arctangent of the normalized direction vector
 components.

 ○ is_closest_to_puck : A boolean indicating if the kart is closest to the puck
 relative to all teammates.

 ○ kart_to_puck_direction : A normalized vector pointing from the kart to the
 puck.

 ○ kart_to_puck_angle : The angle between the kart's front and the direction
 to the puck, calculated similarly to kart_angle.

 ○ kart_to_puck_angle_difference : The difference between kart_angle and
 kart_to_puck_angle, adjusted to be within a [-1, 1] range using limit_period.

 ○ opponent_direction : A normalized vector calculated from the opponent's
 front vector and their center, indicating the direction the opponent's kart is
 facing.

 ○ opponent_distance : The Euclidean distance from the puck to each
 opponent, used to evaluate how close each opponent is to the puck.

 ○ opponent_target : This is a predicted future position of the opponent based
 on their current velocity and direction, which can be used to anticipate
 opponent movements for strategic planning.

 ○ kart_to_opponent_direction : A normalized vector pointing from the
 player's kart to each opponent's kart.

 ○ kart_to_opponent_angle : The angle between the kart's facing direction and
 the direction to each opponent, calculated using the arctangent function.

 ○ kart_to_opponent_angle_difference : The angular difference between the
 kart's orientation and the direction to each opponent, adjusted to be within
 a [-1, 1] range using the limit_period function.

 6

 ○ puck_to_goal_line_direction : Normalized direction from the puck to the
 player's goal line.

 ○ puck_to_goal_line_angle : The angle towards the player’s goal line from the
 puck.

 ○ kart_to_goal_line_angle_difference : The angular difference between the
 kart's orientation and the direction to the goal line, adjusted similarly to
 kart_to_puck_angle_difference.

 ○ distance_puck_to_our_goal : The straight-line distance from the puck to
 the player's goal.

 ○ distance_puck_to_opponent_goal : The distance from the puck to the
 opponent's goal.

 The actions taken by the winning team comprise the target behavior that we are trying
 to model. For a given training example, the following targets were given by the state
 data:

 ● acceleration : A continuous value representing the throttle of the kart, indicating
 how fast the kart should attempt to move forward.

 ● steer : A continuous value that ranges from -1 to 1, where -1 represents full
 steering left, 1 represents full steering right, and 0 represents no steering.

 ● brake : A boolean value indicating whether the brake is being applied. This could
 also include reversing if the kart is not moving forward.

 We generated two datasets:

 1. For the first dataset, we ran all agents against each other many times and then
 treated the winner of each match as the target behavior (we did not save draws).
 This would theoretically lead to a model that imitates a mix of different patterns
 of winning behavior, since agents have inherently different patterns of behavior.

 2. For the second dataset, we chose a specific pre-trained agent we want to imitate,
 named “Jurgen”, ran it against the other agents many times, and then only kept
 the matches in which Jurgen won; these matches were used for training, and
 Jurgen’s behavior was always the target. This would theoretically give us a model
 that imitates only Jurgen’s winning behavior. We chose Jurgen because it
 appeared to have the highest victory rate among the agents.

 We generated matches from various starting conditions so that our model can
 generalize well. Starting conditions include the following:

 ● Initial location of the puck

 7

 ● Initial velocity of the puck (magnitude and direction)

 We also control the maximum number of frames each match runs for. For our final
 dataset, we generated matches using the following frame caps, as listed in Table 1 .

 Max frames Number of matches generated

 200 107

 400 15

 500 224

 600 9

 700 11

 800 15

 900 12

 1000 361

 1100 15

 1200 233

 Table 1: Frame caps used in generated training data

 Each match in this dataset is a Jurgen victory. Our full dataset contained 1002 matches
 comprised of a total of 832,400 frames .

 Model Architecture

 The neural network architecture we settled on consists of three hidden layers. Each
 hidden layer is a sequence of a fully connected (Linear) layer, a batch normalization
 (BatchNorm1d) layer, a Rectified Linear Unit (ReLU) activation function, and a dropout
 layer. The first, second, and third hidden layers have 256, 128, and 64 neurons,
 respectively.

 See the architecture diagram in Figure 1 below:

 8

 Figure 1: Model architecture

 Rationale:

 ● The fully-connected linear layers are a natural choice for a deep learning task
 such as training a state-based agent, as opposed to a computer vision task
 which would require convolutional layers. The first layer, being the largest,
 captures a broad range of features, which are then progressively refined by the
 subsequent layers, enabling the model to learn higher-level strategies.

 ● The batch normalization layers ensure more stable gradients, and help avoid the
 vanishing/exploding gradient problem. This allows faster and more reliable
 convergence [2].

 ● ReLU activation functions were needed to introduce non-linearity into the model,
 allowing it to learn more complex behaviors, which is appropriate for a gamified
 decision-making task such as this one.

 9

 ● To avoid overfitting and help the model generalize, each hidden layer includes a
 dropout regularization, set with a probability of 0.5 to temporarily deactivate
 random neurons during training.

 Multiple numbers of neurons were tested; while using fewer neurons (128–64–32)
 trained faster, it resulted in a model that was less able to model complex
 decision-making behaviors. Ultimately the choice of 256–128–32 struck a balance
 between training time and model sophistication.

 In addition, multiple levels of dropout were tested; a dropout of 0.3 was also reasonably
 performant, but it did not generalize as well compared to our current model. A dropout
 level of 0.5 seemed to strike the optimal balance, as anything higher than that took
 unfeasibly long to train or simply did not converge to an effective model.

 Training and Testing

 One of the main challenges in our project revolved around developing a state agent that
 would be able to navigate the intricacies and obstacles in the game environment
 efficiently. With this challenge in mind, we researched a variety of potential approaches
 that have been successful in automating game player behavior. Primarily, we focused on
 reinforcement learning and imitation learning as the potential development paths most
 likely to render results given the game's constraints and complexity in implementation.

 During the initial phases of the project, we dedicated a significant amount of time to
 employing the Proximal Policy Optimization (PPO) model [3]. This option initially
 seemed to be a very reasonable and reliable approach to training the model, as it is used
 quite commonly in RL. The PPO implementations that we examined used two models in
 conjunction, one dubbed the "Actor" and the other, "Critic" [4]. Due to the constraints of
 needing to use a single unified deep learning model, we combined the two models into a
 single model with two neural networks. Both networks shared some components,
 specifically a series of linear and ReLU layers to process the same inputs. The actor part
 of the network outputs action logits for each possible action. These logits were then
 transformed into actual actions, which could be probabilities for boolean actions or
 actual values for continuous actions. The critic, on the other hand, returned a scalar
 state value representing the success of the current policy. This value was used to
 calculate the advantage function during training to update the policy in future epochs.
 The forward pass called both networks independently, and returned the state value from
 the critic and three sets of values for the actions (sigmoid for acceleration, tanh for
 steering, and boolean for braking, firing, and jumping).

 The training loop of the PPO/Actor-critic approach used training states from stored
 games. These states were passed in a preprocessor (the same one used by the live

 10

 player) to extract the features needed by the model. These inputs were then passed into
 the model to accumulate log probabilities for all of the actions. The probabilities were
 stored in "Experience" objects that were captures of the log probabilities of each epoch's
 application of the current policy in temporal order, the summed reward calculated from
 the next step, the critic's state value, and the actual action that was taken in the game
 (as the predictive label).

 However as we continued to tune and develop, we observed that the PPO model was
 not performing sufficiently and that a new approach needed to be taken. This may have
 been due to a lack of initial data (we started training on a dozen 2000 frame matches).
 The main difficulty here was tuning the reward function so that the policy gradient
 learned to weigh winning behaviors over losing strategies. The initial batch of rewards
 grew in complexity as we attempted to aggregate different variables at new stages of
 gameplay. Some examples include the current score (quickly abandoned); proximity to a
 target (either an opponent kart, the puck, or the goal); logic for determining the best
 target between the two players (switching one player from offense to defense based on
 the current context); rewards for possession of the puck; and whether the kart was
 pointed in the right direction (directly towards the puck), velocity; and absolute distance
 from the center of the field. These complex extra features caused the input set to
 balloon and become unwieldy especially when calculating loss. It was during this
 process that we decided to simplify the loss calculation to aggregate across all forward
 pass outputs instead of separating them by action data type (using MSELoss, instead of
 an ensemble of MSE and BCELoss).

 To address this issue, we decided to pivot towards a dataset aggregation (DAgger)
 approach, that aims to iteratively refine the agent’s current policy by aggregating data
 points from expert demonstrations along with its own experiences [5], [6]. This meant
 we were switching from a RL to an IL strategy. After implementing DAgger, we observed
 significant improvement in our model’s performance. This improvement is a direct result
 of DAgger’s more robust learning process, as it provided a feedback loop that ultimately
 allowed the agent to generalize and adapt to the nuances of the game environment
 much more effectively. The additional support of the expert policy in the DAgger
 approach proved to be instrumental in overcoming the challenges posed by limited
 training data in our project.

 In order to implement imitation learning, we had to harness a dataset of expert actions,
 as mentioned earlier. We tried two approaches:

 ● Approach 1: We ran all agents against each other many times, and for each
 match that isn’t a draw, we used the winner’s actions as the target behavior.

 11

 ● Approach 2: By observing how the agents performed against each other, we
 determined the “best” agent, i.e. the agent with the highest win rate (in our case,
 the Jurgen agent). Then, we ran Jurgen against the other agents many times, and
 for each match Jurgen won, we treated Jurgen’s actions as the target behavior.

 We initially experimented with Approach 1, but after some time it seemed there was a
 fairly low upper limit to how well the model could perform. We hypothesized that this
 limitation arose because different agents display distinct patterns of successful
 behavior, which are only effective within their specific playing strategies. Attempting to
 combine these divergent successful behaviors from various strategies likely leads to a
 conflicting mix. While these behaviors might be effective individually, when merged, they
 interfere with each other, resulting in a counterproductive outcome. In other words, a
 given agent’s “winning behavior” is only consistent and thus effective within that
 particular agent’s strategic framework.

 This inspired us to try a more focused approach, hence Approach 2. After determining
 that Jurgen was the most successful agent on average, we applied the DAgger
 approach to data in which Jurgen was the sole victor. By training on only Jurgen's
 winning behaviors, we aimed to create a model with a coherent playing style, avoiding
 the potential strategy confusion seen in Approach 1. This strategy concentrates on
 imitating the successful tactics of a relatively high-performing agent, potentially leading
 to a more optimized model for high-performance gameplay.

 For both approaches, when generating training data, we initially focused on generating
 matches with a maximum of 200 frames per match (this is relatively low; see Figure 1).
 The rationale here was that if we train on behavior that was able to reach a victory
 within only 200 frames, then we would be modeling fast-winning behavior, i.e. behavior
 that has a high concentration of winning behavior per frame, at least in theory .

 In practice, it turned out that our agent would give up after about 200 frames of
 gameplay and cease to play the game sensibly afterward. It became clear that we could
 not simply expect the agent to extrapolate the “high-concentration” winning behavior
 beyond the match length it was trained on. Thus, we diversified our dataset to include
 frame caps up to 1200 frames. This ended up producing a significantly more
 performant model.

 To implement DAgger, we employed a beta decay procedure whereby the model’s own
 actions would be injected into the training data with increasing concentration as the
 training evolved, with pseudocode described in Figure 2 .

 12

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

 Initialize beta to 1.0 # start with full reliance on expert data
 Set beta_decay to 0.995 # define the decay rate for beta

 For each epoch of training:
 For each sample in the training data:

 Generate a random number between 0 and 1

 If random number < beta:
 Use the expert's action for this sample

 Else:
 Use the model's predicted action for this sample

 # Decay beta to gradually rely more on the model's decisions
 Update beta: beta = beta * beta_decay

 Continue until beta is sufficiently small or number of epochs is reached

 Figure 2: Pseudocode for DAgger procedure

 13

 Results
 In this project, we have tried several strategies to implement imitation learning and
 finally chose Approach 2 (as described in the Methodology section) as the final model.
 This approach, after training using the generated dataset, yields a fair score (38/100) in
 our local test and the final score in the Canvas system was 57/100 (Table 2). Figure 3
 and the associated link provides an example of the 2 vs 2 tournament.

 Geoffrey agent Jurgen agent Yann agent Yoshua agent

 Game 1 1:1 0:3 0:0 0:0

 Game 2 0:0 0:1 0:0 0:0

 Game 3 3:0 0:1 0:1 0:0

 Game 4 0:0 1:2 2:1 2:1

 Total goals scored 4:1 1:7 2:2 2:1

 Table 2: Goals scored against the TA agents in Canvas (our score : opponent score)

 Figure 3 . An example of 2 vs 2 tournament (video available at:
 https://github.com/SamerN88/AI-394D--Final-Project--Group-46)

https://github.com/SamerN88/AI-394D--Final-Project--Group-46

 14

 Note that our model lost every match against Jurgen and could only score once in four
 games, while Jurgen scored seven times total. Considering that our model was trained
 to imitate Jurgen, this is consistent with our theory that Jurgen’s performance is an
 upper limit on our model’s performance. Moreover, seeing that our model won against
 two and drew against one of the other agents (besides Jurgen), it seems we made the
 right choice to imitate Jurgen.

 Using a learning rate scheduler, the following loss evolutions were produced by our
 training and validation procedure (first 66 epochs only):

 Figure 4: Training loss over epochs (first 66 epochs only)

 15

 Figure 5: Validation loss over epochs (first 66 epochs only)

 In the Conclusions and Discussions section, we discuss alternative methods that may
 potentially improve our current model, which we would like to explore in the future given
 adequate time and resources.

 16

 Conclusions and Discussions

 Conclusions

 Our final state-based model, trained using DAgger imitation learning, performed
 moderately when competing with the agents developed by the Professor and TAs. One
 obstacle to improving the model within this training framework is that there is a
 theoretical upper limit on the model’s performance, defined by the Jurgen agent since
 that is the expert agent we imitated. One may naively hope, as we did, that we could
 derive some kind of synergy from imitating multiple different winning strategies from
 multiple agents, but as explained in our methodology and also confirmed by
 implementation, this only confused the model. This was overcome by choosing instead
 to imitate a single expert agent, chosen for its relatively higher win-rate among the given
 agents. And even with imitating a single agent, the model could only perform so well.
 Here we conclude that there is a natural limit to how well an IL-based agent could
 perform, at least using our approach.

 Another obstacle was a difficulty for the model to generalize well. We had anticipated
 the problem of generalization and therefore tried to generate diverse training data by
 systematically shifting the starting conditions (position and velocity of the puck) within
 certain bounds that we considered realistic, and then running all agents on those
 conditions before moving to the next set of conditions. However, when faced with
 slightly different conditions that were not exactly accounted for in our systematic
 conditions-generator, the model quickly regressed and the loss stagnated earlier than
 expected. To overcome this, we modified our data generation strategy to use completely
 randomized starting conditions for each match that was generated, rather than fixing a
 set of starting conditions and running all agents on it. Here we conclude that the
 diversity of the training data is imperative, and one should not expect the model to
 extrapolate intuitively the way a human might.

 Despite the marginal improvements derived from better data generation, a different and
 likely more advanced training approach is needed to achieve a highly performant model.
 In a future iteration, shifting to an RL approach, or a more sophisticated variant of IL, as
 discussed below could offer better avenues for the model to benefit from.

 Potential Improvements

 One way around the upper limit problem would have been to implement reinforcement
 learning correctly, e.g. using the PPO model we cited, given sufficient time and/or

 17

 computational resources. Since RL learns through a vast number of trials, exploring a
 broad range of actions not restricted to the behaviors of a fixed expert agent, without
 suffering from compounding errors often seen in IL methods like behavioral cloning,
 where deviations from optimal behavior can accumulate rapidly due to direct imitation.

 Another way to incorporate RL to enhance our model’s performance is via a method
 called Imitation Bootstrapped Reinforcement Learning (IBRL) [7]. This approach
 attempts to combine the strengths of both RL and IL to optimize the learning process.
 Initially, an UL policy is developed using expert demonstrations (like how we did) to
 establish a robust baseline target behavior. Then during RL training, this IL policy is
 employed in two key phases to enhance learning efficiency and decision-making quality:

 1. Actor Proposal Phase: First, both IL policy and RL policy propose actions at each
 decision point. The action with the higher expected reward, as evaluated by the
 Q-network that predicts the quality of actions given the current state, is executed.

 2. Bootstrap Proposal Phase: Then, the IL policy contributes to the training of the
 Q-network by proposing alternative actions for computing bootstrapping targets,
 which helps accelerate the convergence of the RL policy.

 This strategy aids in overcoming exploration challenges in sparse reward environments,
 where naive and/or random action might not lead to successful outcomes. By
 integrating these expert-driven suggestions into the RL procedure, IBRL enhances the
 traditional RL process by ensuring faster learning and potentially superior performance
 by balancing exploration of the action space with exploitation of expert actions.

 If we want to remain strictly within the IL framework, another way to improve our model
 would be to incorporate Human-Gated DAgger (HG-DAgger), a refined version of DAgger
 where a human expert dynamically intervenes during critical mistakes made by the
 learner [8]. Unlike our current implementation, which uses a predetermined decay rate
 (beta) to linearly reduce expert intervention over time, HG-DAgger adjusts based on the
 learner’s performance at any point in the training procedure. This method potentially
 reduces the occurrence of uncorrected errors when the beta value has decreased.

 Furthermore, given the potential scalability issues of continuous human oversight, we
 can further consider the possibility of an automated variant of HG-DAgger, in which we
 invoke an automated expert to replace the human. In this variant, we could define a
 criteria (with a sufficient degree of sophistication) for determining whether the learner is
 making a mistake that warrants expert intervention; where the human would normally
 intervene in HG-DAgger, our automated expert agent would instead intervene, in theory.
 The automated expert may be a programmatic agent, or even an AI-driven agent,
 depending on the complexity of the problem.

 18

 References
 [1] J. Xing, A. Romero, L. Bauersfeld, D. Scaramuzza, “Bootstrapping Reinforcement

 Learning with Imitation for Vision-Based Agile Flight,” 2024. [Online]. Available:
 https://doi.org/10.48550/arXiv.2403.12203

 [2] J. Bjorck, C. Gomes, B. Selman, K. Q. Weinberger, “Understanding Batch
 Normalization,” 2018. [Online]. Available:
 https://doi.org/10.48550/arXiv.1806.02375

 [3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, “Proximal Policy
 Optimization Algorithms,” 2017. [Online]. Available:
 https://doi.org/10.48550/arXiv.1707.06347

 [4] Henanmemeda, “3.ppo.ipynb,” GitHub repository, 2021. [Online]. Available:
 https://github.com/henanmemeda/RL-Adventure-2/blob/master/3.ppo.ipynb

 [5] N. Al-Naami, “Imitation Learning using Reward-Guided DAgger,” M.S. thesis,
 School of Elect, Eng. and Comp. Sci., KTH Royal Inst. of Tech., Stockholm,
 Sweden, 2020. [Online]. Available:
 https://www.diva-portal.org/smash/get/diva2:1508210/FULLTEXT01.pdf

 [6] S. Ross, G. J. Gordon, J. Andrew Bagnell, “A Reduction of Imitation Learning and
 Structured Prediction to No-Regret Online Learning,” 2011. [Online]. Available:
 https://doi.org/10.48550/arXiv.1011.0686

 [7] H. Hu, S. Mirchandani, D. Sadigh, “Imitation Bootstrapped Reinforcement
 Learning,” 2024. [Online]. Available: https://doi.org/10.48550/arXiv.2311.02198

 [8] M. Kelly, C. Sidrane, K. Driggs-Campbell, M. J. Kochenderfer, “HG-DAgger:
 Interactive Imitation Learning with Human Experts,” 2019. [Online]. Available:
 https://doi.org/10.48550/arXiv.1810.02890

https://doi.org/10.48550/arXiv.2403.12203
https://doi.org/10.48550/arXiv.1806.02375
https://doi.org/10.48550/arXiv.1707.06347
https://github.com/henanmemeda/RL-Adventure-2/blob/master/3.ppo.ipynb
https://www.diva-portal.org/smash/get/diva2:1508210/FULLTEXT01.pdf
https://doi.org/10.48550/arXiv.1011.0686
https://doi.org/10.48550/arXiv.2311.02198
https://doi.org/10.48550/arXiv.1810.02890

