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 Introduction and Motivation 
 Deep  learning,  as  a  profound  advancement  in  artificial  intelligence,  provides  the 
 invaluable  capability  to  automatically  learn  from  experience  without  being  explicitly 
 programmed  and  self-optimizes  as  new  experiences  accumulate.  In  the  context  of 
 gaming  and  game  development,  deep  learning  has  the  potential  to  greatly  enhance  the 
 realism  and  responsiveness  of  non-human  player  behaviors.  In  this  area,  the 
 open-source  SuperTuxKart  Ice-Hockey  game  has  emerged  as  a  prominent  project  and 
 stands  out  in  software  and  game  development,  especially  in  the  field  of  deep  learning. 
 The  SuperTuxKart  Ice-Hockey  game  provides  an  opportunity  for  a  wide  range  of 
 computational  experiments  and  model  construction  and  also  serves  as  a  practical, 
 engaging  tool  to  illustrate  principles  in  a  context  of  accessible  and  robust  machine 
 learning. 

 Integrating  agent-based  models  with  reinforcement  learning  (RL)  in  the  context  of 
 SuperTuxKart  Ice-Hockey  provides  an  avenue  for  advancing  AI  in  games.  RL,  a  type  of 
 machine  learning  approach  where  agents  learn  to  make  decisions  by  interacting  with  an 
 environment,  fits  well  with  the  dynamic  nature  of  games  and  adapts  to  the  changes  in 
 the  environment  and  components.  In  SuperTuxKart,  agents  (in  this  case,  the  characters 
 controlled  by  a  model)  can  be  trained  using  RL  to  optimize  the  strategies,  better  handle 
 the  object,  and  dynamically  adjust  the  tactics  when  taking  the  actions  of  other  players 
 into  account.  The  approach  of  RL  not  only  appreciates  the  complexity  of  the  games  and 
 accounts  for  the  realism  of  the  opponents  but  also  provides  opportunities  for  strategy 
 optimization for human players and enriches the game experience. 

 Another  strategy  for  training  an  agent  to  play  a  game  is  imitation  learning  (IL).  While  RL 
 is  more  computationally  expensive  to  conduct  successfully,  IL  is  a  faster  approach  that 
 relies  on  the  decisions  of  an  expert  whose  interactions  with  the  environment  are  stored 
 and  then  imitated  [1].  To  obtain  training  data,  we  can  feed  various  states  into  the  expert 
 agent  and  use  its  subsequent  actions  as  target  behaviors  for  our  model.  We  attempted 
 at  first  to  implement  an  RL  model  but  ultimately  settled  on  an  IL  model  for  its  speed  of 
 training, as the computational needs of the RL model posed a significant impediment. 

 Moreover,  while  one  option  is  to  choose  a  state-based  agent  that  is  trained  on  the 
 evolving  state,  represented  numerically,  of  various  objects  in  the  game,  another  option  is 
 to  use  an  image-based  agent  that  trains  on  images  of  the  game  and  learns 
 frame-by-frame  what  action  to  take  based  on  the  inferred  state  of  the  game  (inferred 
 visually  through  the  image).  We  chose  to  implement  a  state-based  agent  as  opposed  to 
 an  image-based  agent  because  the  state  agent  would  have  direct  access  to  the  numeric 
 state  of  the  game,  and  would  not  have  to  infer  them  from  an  image,  which  would  have 
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 added  an  extra  learning  step  and  thus  a  degree  of  risk.  A  state  agent  also  trains  faster  in 
 theory, as image processing is substantially more computationally expensive. 

 As  such,  our  project  is  aimed  at  training  an  agent-based  model  using  a  single  deep 
 network,  accounting  for  the  states  of  the  players'  karts,  the  opponents’  karts,  and  the 
 location  of  the  puck,  to  outperform  the  agents  coded  by  TAs  and  Professor  in  2  vs  2 
 tournaments. 
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 Methodology 

 Problem overview 

 The  challenge  lies  in  programming  these  agents  to  effectively  score,  make  strategic 
 decisions  in  real-time,  and  collaborate  with  a  teammate  to  outmaneuver  the  opposing 
 team.  Our  solution,  in  short,  is  to  use  a  state-based  approach  that  learns  state-action 
 relationships,  which  enables  us  to  capture  the  game  state  information  that  was  not 
 provided to the image agent. 

 RL  operates  by  an  agent  interacting  within  a  given  space  and  receiving  rewards,  without 
 predefined  strategies  for  actions.  Instead,  the  agent  gains  knowledge  through  a  process 
 similar  to  "trial  and  error".  RL  is  characterized  by  a  loop  of  actions  and  feedback.  An 
 agent  takes  actions  within  an  environment  which  then  responds  with  feedback.  This 
 feedback  influences  the  agent's  policy  and  prompts  further  actions.  This  loop  helps  the 
 agent  progress  from  its  starting  point  through  numerous  decisions,  aiming  to  achieve  or 
 maximize  a  specific  goal,  with  similarities  to  learning  behaviors  in  humans  (hinting  at 
 potential evolutionary benefits). 

 The  primary  components  of  our  project,  including  both  the  RL  and  IL  paths,  include  the 
 environment  (the  SuperTuxKart  Ice-Hockey  game  itself),  the  agents  (AI-controlled  karts), 
 the  policy  (the  strategy  the  agents  use  to  make  decisions),  and  the  reward  function  (the 
 criteria for success and improvement). 

 ●  Environment  :  SuperTuxKart  Ice-Hockey  provides  a  dynamic  and  complex 
 environment.  This  is  characterized  by  the  unpredictable  agent  movements  and 
 fluctuation  of  the  puck  trajectory.  The  opponent  agents  often  present  diverse 
 behavioral  patterns  making  it  more  difficult  to  anticipate  their  next  move. 
 Fluctuation  of  the  puck  trajectory  also  adds  a  significant  layer  of  complexity  to 
 the  environment.  Since  the  objective  of  the  game  is  to  score  as  many  goals  with 
 the  puck  as  possible,  its  movement  greatly  impacts  our  agents’  decisions  and 
 movements  within  the  environment.  Furthermore,  there  is  also  complexity  which 
 resides  in  the  dynamic  nature  of  the  arena  as  well.  From  arena  layout  to 
 obstacles  to  opponent  difficulty,  each  round  of  the  game  presents  unique 
 challenges  and  opportunities  necessitating  strategic  decision-making  and  the 
 ability to adapt to constantly changing scenarios. 

 ●  Agents  :  In  our  project,  the  agents  are  the  AI-controlled  karts  tasked  with  racing 
 against  the  Professor  and  TA  agents.  Each  agent's  behavior  is  dictated  by  a 
 neural network that decides actions based on input states from the game. 



 4 

 ●  Policy  :  As  an  algorithm  that  the  agents  use  to  determine  the  best  actions  based 
 on  the  current  state  of  the  environment,  the  policy  components  involved  in  this 
 project  include  velocity  (speed  +  direction  vectorized  for  3  dimensional  space), 
 other actions, etc,  to maximize the performance in games. 

 ●  Reward  Function  :  This  function  measures  how  well  an  agent  is  performing.  In  the 
 SuperTuxKart  context,  rewards  are  given  for  winning  against  opponents.  The 
 design  of  the  reward  function  is  critical  as  it  directly  influences  learning 
 outcomes  by  guiding  the  agents  toward  more  effective  strategies.  In  our  project, 
 the  reward  function  was  developed,  but  due  to  challenges  in  the  implementation, 
 it  was  ultimately  not  used.  Despite  this  setback,  we  were  still  able  to  gain  insights 
 into  our  approach  from  this  process  and  re-evaluate  our  strategy  for  agent 
 development.  While  having  a  reward  function  is  a  critical  aspect  of  a  typical  RL 
 project,  our  focus  on  imitation  learning  allowed  us  to  deviate  from  a  reward 
 system  by  primarily  relying  on  expert  demonstrations  and  capturing  that  into  the 
 overall learning process. 

 By  leveraging  these  components,  our  project  aims  to  harness  the  power  of  RL  and/or  IL 
 to  create  intelligent,  competitive  players.  These  agents  are  expected  to  not  only 
 compete  effectively  in  the  game  but  also  continuously  learn  and  adapt,  improving  their 
 strategies  based  on  the  outcomes  of  their  actions  and  the  shifting  dynamics  of  the 
 game environment. 

 Dataset 

 SuperTuxKart  features  an  AI  for  players  to  compete  against,  and  there  were  a  number  of 
 additional  human-trained  or  designed  agents  provided  to  compete  against  with  their 
 own  unique  emphases  in  targeting  and  strategy.  To  obtain  training  data,  we  played  each 
 of  these  agents  against  each  other,  and  saved  the  state  of  each  frame  of  the  match  into 
 a  structured  format.  The  states  from  all  frames  of  a  single  match  comprise  a  single 
 training  example.  The  state  data  contains  information  about  the  puck,  the  two  players  of 
 Team  1,  the  two  players  of  Team  2,  and  the  goal  lines.  This  information  contains  data 
 points like coordinate locations as well as the actions of the players. 

 Features and Targets 

 For  a  given  training  example,  the  following  features  were  either  given  directly  by  the 
 state  data  or  computed  therefrom;  features  involving  angles  were  computed  from  the 
 Cartesian coordinates, using basic trigonometry: 

 ●  Given Features: 
 ○  kart_front  : The location coordinates of the front of the kart. 
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 ○  kart_center  : The location coordinates of the center of the kart. 
 ○  kart_velocity  : The velocity vector of the kart. 
 ○  opponent_front  :  The  location  coordinates  of  the  front  of  the  opponent's 

 kart. 
 ○  opponent_center  :  The  location  coordinates  of  the  center  of  the  opponent's 

 kart. 
 ○  opponent_velocity  : The velocity vector of the opponent's kart. 
 ○  puck_center  : The location of the puck. 
 ○  their_goal_line_center  : The center of the opponent's goal line. 
 ○  our_goal_line_center  : The center of the player's own goal line. 

 ●  Engineered Features: 
 ○  kart_direction  :  A  normalized  vector  derived  from  kart_front  and 

 kart_center showing the direction the kart is facing. 
 ○  kart_angle  :  The  angle  of  the  kart  with  respect  to  some  fixed  axis, 

 calculated  using  the  arctangent  of  the  normalized  direction  vector 
 components. 

 ○  is_closest_to_puck  :  A  boolean  indicating  if  the  kart  is  closest  to  the  puck 
 relative to all teammates. 

 ○  kart_to_puck_direction  :  A  normalized  vector  pointing  from  the  kart  to  the 
 puck. 

 ○  kart_to_puck_angle  :  The  angle  between  the  kart's  front  and  the  direction 
 to the puck, calculated similarly to kart_angle. 

 ○  kart_to_puck_angle_difference  :  The  difference  between  kart_angle  and 
 kart_to_puck_angle, adjusted to be within a [-1, 1] range using limit_period. 

 ○  opponent_direction  :  A  normalized  vector  calculated  from  the  opponent's 
 front  vector  and  their  center,  indicating  the  direction  the  opponent's  kart  is 
 facing. 

 ○  opponent_distance  :  The  Euclidean  distance  from  the  puck  to  each 
 opponent, used to evaluate how close each opponent is to the puck. 

 ○  opponent_target  :  This  is  a  predicted  future  position  of  the  opponent  based 
 on  their  current  velocity  and  direction,  which  can  be  used  to  anticipate 
 opponent movements for strategic planning. 

 ○  kart_to_opponent_direction  :  A  normalized  vector  pointing  from  the 
 player's kart to each opponent's kart. 

 ○  kart_to_opponent_angle  :  The  angle  between  the  kart's  facing  direction  and 
 the direction to each opponent, calculated using the arctangent function. 

 ○  kart_to_opponent_angle_difference  :  The  angular  difference  between  the 
 kart's  orientation  and  the  direction  to  each  opponent,  adjusted  to  be  within 
 a [-1, 1] range using the limit_period function. 
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 ○  puck_to_goal_line_direction  :  Normalized  direction  from  the  puck  to  the 
 player's goal line. 

 ○  puck_to_goal_line_angle  :  The  angle  towards  the  player’s  goal  line  from  the 
 puck. 

 ○  kart_to_goal_line_angle_difference  :  The  angular  difference  between  the 
 kart's  orientation  and  the  direction  to  the  goal  line,  adjusted  similarly  to 
 kart_to_puck_angle_difference. 

 ○  distance_puck_to_our_goal  :  The  straight-line  distance  from  the  puck  to 
 the player's goal. 

 ○  distance_puck_to_opponent_goal  :  The  distance  from  the  puck  to  the 
 opponent's goal. 

 The  actions  taken  by  the  winning  team  comprise  the  target  behavior  that  we  are  trying 
 to  model.  For  a  given  training  example,  the  following  targets  were  given  by  the  state 
 data: 

 ●  acceleration  :  A  continuous  value  representing  the  throttle  of  the  kart,  indicating 
 how fast the kart should attempt to move forward. 

 ●  steer  :  A  continuous  value  that  ranges  from  -1  to  1,  where  -1  represents  full 
 steering left, 1 represents full steering right, and 0 represents no steering. 

 ●  brake  :  A  boolean  value  indicating  whether  the  brake  is  being  applied.  This  could 
 also include reversing if the kart is not moving forward. 

 We generated two datasets: 

 1.  For  the  first  dataset,  we  ran  all  agents  against  each  other  many  times  and  then 
 treated  the  winner  of  each  match  as  the  target  behavior  (we  did  not  save  draws). 
 This  would  theoretically  lead  to  a  model  that  imitates  a  mix  of  different  patterns 
 of winning behavior, since agents have inherently different patterns of behavior. 

 2.  For  the  second  dataset,  we  chose  a  specific  pre-trained  agent  we  want  to  imitate, 
 named  “Jurgen”,  ran  it  against  the  other  agents  many  times,  and  then  only  kept 
 the  matches  in  which  Jurgen  won;  these  matches  were  used  for  training,  and 
 Jurgen’s  behavior  was  always  the  target.  This  would  theoretically  give  us  a  model 
 that  imitates  only  Jurgen’s  winning  behavior.  We  chose  Jurgen  because  it 
 appeared to have the highest victory rate among the agents. 

 We  generated  matches  from  various  starting  conditions  so  that  our  model  can 
 generalize well. Starting conditions include the following: 

 ●  Initial location of the puck 
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 ●  Initial velocity of the puck (magnitude and direction) 

 We  also  control  the  maximum  number  of  frames  each  match  runs  for.  For  our  final 
 dataset, we generated matches using the following frame caps, as listed in  Table 1  . 

 Max frames  Number of matches generated 

 200  107 

 400  15 

 500  224 

 600  9 

 700  11 

 800  15 

 900  12 

 1000  361 

 1100  15 

 1200  233 

 Table 1:  Frame caps used in generated training data 

 Each  match  in  this  dataset  is  a  Jurgen  victory.  Our  full  dataset  contained  1002  matches 
 comprised of a total of  832,400 frames  . 

 Model Architecture 

 The neural network architecture we settled on consists of three hidden layers. Each 
 hidden layer is a sequence of a fully connected (Linear) layer, a batch normalization 
 (BatchNorm1d) layer, a Rectified Linear Unit (ReLU) activation function, and a dropout 
 layer. The first, second, and third hidden layers have 256, 128, and 64 neurons, 
 respectively. 

 See the architecture diagram in  Figure 1  below: 
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 Figure 1:  Model architecture 

 Rationale: 

 ●  The fully-connected linear layers are a natural choice for a deep learning task 
 such as training a state-based agent, as opposed to a computer vision task 
 which would require convolutional layers. The first layer, being the largest, 
 captures a broad range of features, which are then progressively refined by the 
 subsequent layers, enabling the model to learn higher-level strategies. 

 ●  The batch normalization layers ensure more stable gradients, and help avoid the 
 vanishing/exploding gradient problem. This allows faster and more reliable 
 convergence [2]. 

 ●  ReLU activation functions were needed to introduce non-linearity into the model, 
 allowing it to learn more complex behaviors, which is appropriate for a gamified 
 decision-making task such as this one. 
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 ●  To avoid overfitting and help the model generalize, each hidden layer includes a 
 dropout regularization, set with a probability of 0.5 to temporarily deactivate 
 random neurons during training. 

 Multiple numbers of neurons were tested; while using fewer neurons (128–64–32) 
 trained faster, it resulted in a model that was less able to model complex 
 decision-making behaviors. Ultimately the choice of 256–128–32 struck a balance 
 between training time and model sophistication. 

 In addition, multiple levels of dropout were tested; a dropout of 0.3 was also reasonably 
 performant, but it did not generalize as well compared to our current model. A dropout 
 level of 0.5 seemed to strike the optimal balance, as anything higher than that took 
 unfeasibly long to train or simply did not converge to an effective model. 

 Training and Testing 

 One  of  the  main  challenges  in  our  project  revolved  around  developing  a  state  agent  that 
 would  be  able  to  navigate  the  intricacies  and  obstacles  in  the  game  environment 
 efficiently.  With  this  challenge  in  mind,  we  researched  a  variety  of  potential  approaches 
 that  have  been  successful  in  automating  game  player  behavior.  Primarily,  we  focused  on 
 reinforcement  learning  and  imitation  learning  as  the  potential  development  paths  most 
 likely to render results given the game's constraints and complexity in implementation. 

 During  the  initial  phases  of  the  project,  we  dedicated  a  significant  amount  of  time  to 
 employing  the  Proximal  Policy  Optimization  (PPO)  model  [3].  This  option  initially 
 seemed  to  be  a  very  reasonable  and  reliable  approach  to  training  the  model,  as  it  is  used 
 quite  commonly  in  RL.  The  PPO  implementations  that  we  examined  used  two  models  in 
 conjunction,  one  dubbed  the  "Actor"  and  the  other,  "Critic"  [4].  Due  to  the  constraints  of 
 needing  to  use  a  single  unified  deep  learning  model,  we  combined  the  two  models  into  a 
 single  model  with  two  neural  networks.  Both  networks  shared  some  components, 
 specifically  a  series  of  linear  and  ReLU  layers  to  process  the  same  inputs.  The  actor  part 
 of  the  network  outputs  action  logits  for  each  possible  action.  These  logits  were  then 
 transformed  into  actual  actions,  which  could  be  probabilities  for  boolean  actions  or 
 actual  values  for  continuous  actions.  The  critic,  on  the  other  hand,  returned  a  scalar 
 state  value  representing  the  success  of  the  current  policy.  This  value  was  used  to 
 calculate  the  advantage  function  during  training  to  update  the  policy  in  future  epochs. 
 The  forward  pass  called  both  networks  independently,  and  returned  the  state  value  from 
 the  critic  and  three  sets  of  values  for  the  actions  (sigmoid  for  acceleration,  tanh  for 
 steering, and boolean for braking, firing, and jumping). 

 The  training  loop  of  the  PPO/Actor-critic  approach  used  training  states  from  stored 
 games.  These  states  were  passed  in  a  preprocessor  (the  same  one  used  by  the  live 
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 player)  to  extract  the  features  needed  by  the  model.  These  inputs  were  then  passed  into 
 the  model  to  accumulate  log  probabilities  for  all  of  the  actions.  The  probabilities  were 
 stored  in  "Experience"  objects  that  were  captures  of  the  log  probabilities  of  each  epoch's 
 application  of  the  current  policy  in  temporal  order,  the  summed  reward  calculated  from 
 the  next  step,  the  critic's  state  value,  and  the  actual  action  that  was  taken  in  the  game 
 (as the predictive label). 

 However  as  we  continued  to  tune  and  develop,  we  observed  that  the  PPO  model  was 
 not  performing  sufficiently  and  that  a  new  approach  needed  to  be  taken.  This  may  have 
 been  due  to  a  lack  of  initial  data  (we  started  training  on  a  dozen  2000  frame  matches). 
 The  main  difficulty  here  was  tuning  the  reward  function  so  that  the  policy  gradient 
 learned  to  weigh  winning  behaviors  over  losing  strategies.  The  initial  batch  of  rewards 
 grew  in  complexity  as  we  attempted  to  aggregate  different  variables  at  new  stages  of 
 gameplay.  Some  examples  include  the  current  score  (quickly  abandoned);  proximity  to  a 
 target  (either  an  opponent  kart,  the  puck,  or  the  goal);  logic  for  determining  the  best 
 target  between  the  two  players  (switching  one  player  from  offense  to  defense  based  on 
 the  current  context);  rewards  for  possession  of  the  puck;  and  whether  the  kart  was 
 pointed  in  the  right  direction  (directly  towards  the  puck),  velocity;  and  absolute  distance 
 from  the  center  of  the  field.  These  complex  extra  features  caused  the  input  set  to 
 balloon  and  become  unwieldy  especially  when  calculating  loss.  It  was  during  this 
 process  that  we  decided  to  simplify  the  loss  calculation  to  aggregate  across  all  forward 
 pass  outputs  instead  of  separating  them  by  action  data  type  (using  MSELoss,  instead  of 
 an ensemble of MSE and BCELoss). 

 To  address  this  issue,  we  decided  to  pivot  towards  a  dataset  aggregation  (DAgger) 
 approach,  that  aims  to  iteratively  refine  the  agent’s  current  policy  by  aggregating  data 
 points  from  expert  demonstrations  along  with  its  own  experiences  [5],  [6].  This  meant 
 we  were  switching  from  a  RL  to  an  IL  strategy.  After  implementing  DAgger,  we  observed 
 significant  improvement  in  our  model’s  performance.  This  improvement  is  a  direct  result 
 of  DAgger’s  more  robust  learning  process,  as  it  provided  a  feedback  loop  that  ultimately 
 allowed  the  agent  to  generalize  and  adapt  to  the  nuances  of  the  game  environment 
 much  more  effectively.  The  additional  support  of  the  expert  policy  in  the  DAgger 
 approach  proved  to  be  instrumental  in  overcoming  the  challenges  posed  by  limited 
 training data in our project. 

 In  order  to  implement  imitation  learning,  we  had  to  harness  a  dataset  of  expert  actions, 
 as mentioned earlier. We tried two approaches: 

 ●  Approach  1:  We  ran  all  agents  against  each  other  many  times,  and  for  each 
 match that isn’t a draw, we used the winner’s actions as the target behavior. 
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 ●  Approach  2:  By  observing  how  the  agents  performed  against  each  other,  we 
 determined  the  “best”  agent,  i.e.  the  agent  with  the  highest  win  rate  (in  our  case, 
 the  Jurgen  agent).  Then,  we  ran  Jurgen  against  the  other  agents  many  times,  and 
 for each match Jurgen won, we treated Jurgen’s actions as the target behavior. 

 We  initially  experimented  with  Approach  1,  but  after  some  time  it  seemed  there  was  a 
 fairly  low  upper  limit  to  how  well  the  model  could  perform.  We  hypothesized  that  this 
 limitation  arose  because  different  agents  display  distinct  patterns  of  successful 
 behavior,  which  are  only  effective  within  their  specific  playing  strategies.  Attempting  to 
 combine  these  divergent  successful  behaviors  from  various  strategies  likely  leads  to  a 
 conflicting  mix.  While  these  behaviors  might  be  effective  individually,  when  merged,  they 
 interfere  with  each  other,  resulting  in  a  counterproductive  outcome.  In  other  words,  a 
 given  agent’s  “winning  behavior”  is  only  consistent  and  thus  effective  within  that 
 particular agent’s strategic framework. 

 This  inspired  us  to  try  a  more  focused  approach,  hence  Approach  2.  After  determining 
 that  Jurgen  was  the  most  successful  agent  on  average,  we  applied  the  DAgger 
 approach  to  data  in  which  Jurgen  was  the  sole  victor.  By  training  on  only  Jurgen's 
 winning  behaviors,  we  aimed  to  create  a  model  with  a  coherent  playing  style,  avoiding 
 the  potential  strategy  confusion  seen  in  Approach  1.  This  strategy  concentrates  on 
 imitating  the  successful  tactics  of  a  relatively  high-performing  agent,  potentially  leading 
 to a more optimized model for high-performance gameplay. 

 For  both  approaches,  when  generating  training  data,  we  initially  focused  on  generating 
 matches  with  a  maximum  of  200  frames  per  match  (this  is  relatively  low;  see  Figure  1). 
 The  rationale  here  was  that  if  we  train  on  behavior  that  was  able  to  reach  a  victory 
 within  only  200  frames,  then  we  would  be  modeling  fast-winning  behavior,  i.e.  behavior 
 that has a high concentration of winning behavior per frame, at least  in theory  . 

 In  practice,  it  turned  out  that  our  agent  would  give  up  after  about  200  frames  of 
 gameplay  and  cease  to  play  the  game  sensibly  afterward.  It  became  clear  that  we  could 
 not  simply  expect  the  agent  to  extrapolate  the  “high-concentration”  winning  behavior 
 beyond  the  match  length  it  was  trained  on.  Thus,  we  diversified  our  dataset  to  include 
 frame  caps  up  to  1200  frames.  This  ended  up  producing  a  significantly  more 
 performant model. 

 To  implement  DAgger,  we  employed  a  beta  decay  procedure  whereby  the  model’s  own 
 actions  would  be  injected  into  the  training  data  with  increasing  concentration  as  the 
 training evolved, with pseudocode described in  Figure 2  . 
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 Initialize beta to  1.0  # start with full reliance on expert data 
 Set beta_decay to  0.995  # define the decay rate for beta 

 For each epoch of training: 
 For each sample in the training data: 

 Generate a random number between  0  and  1 

 If random number < beta: 
 Use the expert's action for this sample 

 Else: 
 Use the model's predicted action for this sample 

 # Decay beta to gradually rely more on the model's decisions 
 Update beta: beta = beta * beta_decay 

 Continue until beta is sufficiently small or number of epochs is reached 

 Figure 2:  Pseudocode for DAgger procedure 
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 Results 
 In  this  project,  we  have  tried  several  strategies  to  implement  imitation  learning  and 
 finally  chose  Approach  2  (as  described  in  the  Methodology  section)  as  the  final  model. 
 This  approach,  after  training  using  the  generated  dataset,  yields  a  fair  score  (38/100)  in 
 our  local  test  and  the  final  score  in  the  Canvas  system  was  57/100  (  Table  2  ).  Figure  3 
 and the associated link provides an example of the 2 vs 2 tournament. 

 Geoffrey agent  Jurgen agent  Yann agent  Yoshua agent 

 Game 1  1:1  0:3  0:0  0:0 

 Game 2  0:0  0:1  0:0  0:0 

 Game 3  3:0  0:1  0:1  0:0 

 Game 4  0:0  1:2  2:1  2:1 

 Total goals scored  4:1  1:7  2:2  2:1 

 Table 2:  Goals scored against the TA agents in Canvas (our score : opponent score) 

 Figure 3  . An example of 2 vs 2 tournament (video available at: 
 https://github.com/SamerN88/AI-394D--Final-Project--Group-46  ) 

https://github.com/SamerN88/AI-394D--Final-Project--Group-46
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 Note  that  our  model  lost  every  match  against  Jurgen  and  could  only  score  once  in  four 
 games,  while  Jurgen  scored  seven  times  total.  Considering  that  our  model  was  trained 
 to  imitate  Jurgen,  this  is  consistent  with  our  theory  that  Jurgen’s  performance  is  an 
 upper  limit  on  our  model’s  performance.  Moreover,  seeing  that  our  model  won  against 
 two  and  drew  against  one  of  the  other  agents  (besides  Jurgen),  it  seems  we  made  the 
 right choice to imitate Jurgen. 

 Using  a  learning  rate  scheduler,  the  following  loss  evolutions  were  produced  by  our 
 training and validation procedure (first 66 epochs only): 

 Figure 4:  Training loss over epochs (first 66 epochs only) 
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 Figure 5:  Validation loss over epochs (first 66 epochs only) 

 In  the  Conclusions  and  Discussions  section,  we  discuss  alternative  methods  that  may 
 potentially  improve  our  current  model,  which  we  would  like  to  explore  in  the  future  given 
 adequate time and resources. 
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 Conclusions and Discussions 

 Conclusions 

 Our  final  state-based  model,  trained  using  DAgger  imitation  learning,  performed 
 moderately  when  competing  with  the  agents  developed  by  the  Professor  and  TAs.  One 
 obstacle  to  improving  the  model  within  this  training  framework  is  that  there  is  a 
 theoretical  upper  limit  on  the  model’s  performance,  defined  by  the  Jurgen  agent  since 
 that  is  the  expert  agent  we  imitated.  One  may  naively  hope,  as  we  did,  that  we  could 
 derive  some  kind  of  synergy  from  imitating  multiple  different  winning  strategies  from 
 multiple  agents,  but  as  explained  in  our  methodology  and  also  confirmed  by 
 implementation,  this  only  confused  the  model.  This  was  overcome  by  choosing  instead 
 to  imitate  a  single  expert  agent,  chosen  for  its  relatively  higher  win-rate  among  the  given 
 agents.  And  even  with  imitating  a  single  agent,  the  model  could  only  perform  so  well. 
 Here  we  conclude  that  there  is  a  natural  limit  to  how  well  an  IL-based  agent  could 
 perform, at least using our approach. 

 Another  obstacle  was  a  difficulty  for  the  model  to  generalize  well.  We  had  anticipated 
 the  problem  of  generalization  and  therefore  tried  to  generate  diverse  training  data  by 
 systematically  shifting  the  starting  conditions  (position  and  velocity  of  the  puck)  within 
 certain  bounds  that  we  considered  realistic,  and  then  running  all  agents  on  those 
 conditions  before  moving  to  the  next  set  of  conditions.  However,  when  faced  with 
 slightly  different  conditions  that  were  not  exactly  accounted  for  in  our  systematic 
 conditions-generator,  the  model  quickly  regressed  and  the  loss  stagnated  earlier  than 
 expected.  To  overcome  this,  we  modified  our  data  generation  strategy  to  use  completely 
 randomized  starting  conditions  for  each  match  that  was  generated,  rather  than  fixing  a 
 set  of  starting  conditions  and  running  all  agents  on  it.  Here  we  conclude  that  the 
 diversity  of  the  training  data  is  imperative,  and  one  should  not  expect  the  model  to 
 extrapolate intuitively the way a human might. 

 Despite  the  marginal  improvements  derived  from  better  data  generation,  a  different  and 
 likely  more  advanced  training  approach  is  needed  to  achieve  a  highly  performant  model. 
 In  a  future  iteration,  shifting  to  an  RL  approach,  or  a  more  sophisticated  variant  of  IL,  as 
 discussed below could offer better avenues for the model to benefit from. 

 Potential Improvements 

 One  way  around  the  upper  limit  problem  would  have  been  to  implement  reinforcement 
 learning  correctly,  e.g.  using  the  PPO  model  we  cited,  given  sufficient  time  and/or 
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 computational  resources.  Since  RL  learns  through  a  vast  number  of  trials,  exploring  a 
 broad  range  of  actions  not  restricted  to  the  behaviors  of  a  fixed  expert  agent,  without 
 suffering  from  compounding  errors  often  seen  in  IL  methods  like  behavioral  cloning, 
 where deviations from optimal behavior can accumulate rapidly due to direct imitation. 

 Another  way  to  incorporate  RL  to  enhance  our  model’s  performance  is  via  a  method 
 called  Imitation  Bootstrapped  Reinforcement  Learning  (IBRL)  [7].  This  approach 
 attempts  to  combine  the  strengths  of  both  RL  and  IL  to  optimize  the  learning  process. 
 Initially,  an  UL  policy  is  developed  using  expert  demonstrations  (like  how  we  did)  to 
 establish  a  robust  baseline  target  behavior.  Then  during  RL  training,  this  IL  policy  is 
 employed in two key phases to enhance learning efficiency and decision-making quality: 

 1.  Actor  Proposal  Phase:  First,  both  IL  policy  and  RL  policy  propose  actions  at  each 
 decision  point.  The  action  with  the  higher  expected  reward,  as  evaluated  by  the 
 Q-network that predicts the quality of actions given the current state, is executed. 

 2.  Bootstrap  Proposal  Phase:  Then,  the  IL  policy  contributes  to  the  training  of  the 
 Q-network  by  proposing  alternative  actions  for  computing  bootstrapping  targets, 
 which helps accelerate the convergence of the RL policy. 

 This  strategy  aids  in  overcoming  exploration  challenges  in  sparse  reward  environments, 
 where  naive  and/or  random  action  might  not  lead  to  successful  outcomes.  By 
 integrating  these  expert-driven  suggestions  into  the  RL  procedure,  IBRL  enhances  the 
 traditional  RL  process  by  ensuring  faster  learning  and  potentially  superior  performance 
 by balancing exploration of the action space with exploitation of expert actions. 

 If  we  want  to  remain  strictly  within  the  IL  framework,  another  way  to  improve  our  model 
 would  be  to  incorporate  Human-Gated  DAgger  (HG-DAgger),  a  refined  version  of  DAgger 
 where  a  human  expert  dynamically  intervenes  during  critical  mistakes  made  by  the 
 learner  [8].  Unlike  our  current  implementation,  which  uses  a  predetermined  decay  rate 
 (beta)  to  linearly  reduce  expert  intervention  over  time,  HG-DAgger  adjusts  based  on  the 
 learner’s  performance  at  any  point  in  the  training  procedure.  This  method  potentially 
 reduces the occurrence of uncorrected errors when the beta value has decreased. 

 Furthermore,  given  the  potential  scalability  issues  of  continuous  human  oversight,  we 
 can  further  consider  the  possibility  of  an  automated  variant  of  HG-DAgger,  in  which  we 
 invoke  an  automated  expert  to  replace  the  human.  In  this  variant,  we  could  define  a 
 criteria  (with  a  sufficient  degree  of  sophistication)  for  determining  whether  the  learner  is 
 making  a  mistake  that  warrants  expert  intervention;  where  the  human  would  normally 
 intervene  in  HG-DAgger,  our  automated  expert  agent  would  instead  intervene,  in  theory. 
 The  automated  expert  may  be  a  programmatic  agent,  or  even  an  AI-driven  agent, 
 depending on the complexity of the problem. 
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