
6/14/22, 4:53 PM Heart_Arrhythmias_Data_Analysis

localhost:8888/nbconvert/html/Desktop/Programming/Heart-Arrhythmias-Data-Analysis/Heart_Arrhythmias_Data_Analysis.ipynb?download=false 1/16

Analysis of ECG Data to Diagnose Heart
Arrhythmias

Samer Najjar

30 November 2021

About my dataset

My dataset is about heart arrhythmias (irregular heartbeat). Each observation represents a

patient, containing ECG values, the name of the patient's arrhythmia, and the heart condition(s)

the patient has, if any.

Dataset source: https://figshare.com/collections/ChapmanECG/4560497/2

Research question and learning model

I am trying to use the numeric ECG values of a patient to predict certain arrhythmias and/or

heart conditions. Thus, I will use classification models. I will use Logistic Regression, Support

Vector Machine (SVM), K-Nearest Neighbors (KNN), and Decision Tree to predict certain

selected heart conditions.

Evaluating the model

I will use a train/test split to train and test the model, then I will look at the accuracy, precision,

and recall to evaluate the performance of the model. In medicine we really don't like false

negatives, as an undiagnosed heart condition could be life-threatening, so the recall will be

especially important. I relate to this personally; despite having multiple ECGs done on me,

doctors failed to diagnose me until I had two cardiac arrests in one hour. I was extremely lucky

to survive, but if I had been diagnosed earlier we could have avoided that which kills 475,000

Americans yearly.

My prediction

Based on what I've learned about cardiology, the ECG is fairly effective in diagnosing or partially

diagnosing many heart conditions. Thus, I expect my models to have at least 80% accuracy at

worst, and hopefully very few false negatives, i.e. high recall (although I'm not sure if I will be

able to achieve a high enough recall for clinical use).

0) Basic anatomy

In this project we are mainly concerned with diagnosing arrhythmogenic conditions related to

the atriums (upper chambers) and the ventricles (lower chambers):

https://figshare.com/collections/ChapmanECG/4560497/2


6/14/22, 4:53 PM Heart_Arrhythmias_Data_Analysis

localhost:8888/nbconvert/html/Desktop/Programming/Heart-Arrhythmias-Data-Analysis/Heart_Arrhythmias_Data_Analysis.ipynb?download=false 2/16


[

Source: https://yourheartvalve.com/heart-basics/heart-anatomy/ ]

1) Prepare data

FileName Rhythm Beat PatientAge Gender VentricularRate Atri

In [1]: # Import libraries



import numpy as np

import pandas as pd

import matplotlib.pyplot as plt



from sklearn.linear_model import LogisticRegression

from sklearn import svm

from sklearn.neighbors import KNeighborsClassifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score, recall_score, classification_report



from itertools import combinations



# Set random state for project (8)

RANDOM_STATE = 8



# Enable inline mode for matplotlib so that Jupyter displays graphs

%matplotlib inline


In [2]: # Import dataset of ECG values and diagnostic info for various heart arrhythmias


arrhythmias = pd.read_excel('data/Diagnostics.xlsx')

arrhythmias

Out[2]:

https://yourheartvalve.com/heart-basics/heart-anatomy/


6/14/22, 4:53 PM Heart_Arrhythmias_Data_Analysis

localhost:8888/nbconvert/html/Desktop/Programming/Heart-Arrhythmias-Data-Analysis/Heart_Arrhythmias_Data_Analysis.ipynb?download=false 3/16

FileName Rhythm Beat PatientAge Gender VentricularRate Atri

0 MUSE_20180113_171327_27000 AFIB RBBB
TWC

85 MALE 117

1 MUSE_20180112_073319_29000 SB TWC 59 FEMALE 52

2 MUSE_20180111_165520_97000 SA NONE 20 FEMALE 67

3 MUSE_20180113_121940_44000 SB NONE 66 MALE 53

4 MUSE_20180112_122850_57000 AF STDD
STTC

73 FEMALE 162

... ... ... ... ... ... ...

10641 MUSE_20181222_204306_99000 SVT NONE 80 FEMALE 196

10642 MUSE_20181222_204309_22000 SVT NONE 81 FEMALE 162

10643 MUSE_20181222_204310_31000 SVT NONE 39 MALE 152

10644 MUSE_20181222_204312_58000 SVT NONE 76 MALE 175

10645 MUSE_20181222_204314_78000 SVT NONE 75 MALE 117

10646 rows × 16 columns

Attributes Type ValueRange Description

0 FileName String NaN ECG data file name(unique ID)

1 Rhythm String NaN Rhythm Label

2 Beat String NaN Other conditions Label

3 PatientAge Numeric 0-999 Age

4 Gender String MALE/FEMAL Gender

5 VentricularRate Numeric 0-999 Ventricular rate in BPM

6 AtrialRate Numeric 0-999 Atrial rate in BPM

7 QRSDuration Numeric - 0-999 QRS duration in msec

8 QTInterval Numeric 0-999 QT interval in msec

9 QTCorrected Numeric 0-999 Corrected QT interval in msec

10 RAxis Numeric -179~180 R axis

11 TAxis Numeric -179~181 T axis

12 QRSCount Numeric 0-254 QRS count

13 QOnset Numeric 16 Bit Unsigned Q onset(In samples)

14 QOffset Numeric 17 Bit Unsigned Q offset(In samples)

15 TOffset Numeric 18 Bit Unsigned T offset(In samples)

In [3]: # Show attribute info


attribute_info = pd.read_excel('data/AttributesDictionary.xlsx')

attribute_info


Out[3]:



6/14/22, 4:53 PM Heart_Arrhythmias_Data_Analysis

localhost:8888/nbconvert/html/Desktop/Programming/Heart-Arrhythmias-Data-Analysis/Heart_Arrhythmias_Data_Analysis.ipynb?download=false 4/16

Number of NaN values by column:


FileName: 0

Rhythm: 0

Beat: 0

PatientAge: 0

Gender: 0

VentricularRate: 0

AtrialRate: 0

QRSDuration: 0

QTInterval: 0

QTCorrected: 0

RAxis: 0

TAxis: 0

QRSCount: 0

QOnset: 0

QOffset: 0
TOffset: 0

Rhythm Beat PatientAge Gender VentricularRate AtrialRate QRSDuration QTInterval

0 AFIB RBBB
TWC

85 MALE 117 234 114 356

1 SB TWC 59 FEMALE 52 52 92 432

2 SA NONE 20 FEMALE 67 67 82 382

3 SB NONE 66 MALE 53 53 96 456

4 AF STDD
STTC

73 FEMALE 162 162 114 252

... ... ... ... ... ... ... ... ...

10641 SVT NONE 80 FEMALE 196 73 168 284

10642 SVT NONE 81 FEMALE 162 81 162 294

10643 SVT NONE 39 MALE 152 92 152 340

10644 SVT NONE 76 MALE 175 178 128 310

10645 SVT NONE 75 MALE 117 104 140 312

10646 rows × 15 columns

In [4]: # Check if columns have NaN values



print('Number of NaN values by column:\n')

for col in arrhythmias.columns:

    print(f'{col}: {arrhythmias[col].isnull().sum()}')


In [5]: # No NaN values, so data is clean

# Drop FileName column



arrhythmias = arrhythmias.drop('FileName', axis=1).reset_index(drop=True)

arrhythmias

Out[5]:

In [6]: # Import dictionary for rhythm names




6/14/22, 4:53 PM Heart_Arrhythmias_Data_Analysis

localhost:8888/nbconvert/html/Desktop/Programming/Heart-Arrhythmias-Data-Analysis/Heart_Arrhythmias_Data_Analysis.ipynb?download=false 5/16

Acronym Name Full Name

0 SB Sinus Bradycardia

1 SR Sinus Rhythm

2 AFIB Atrial Fibrillation

3 ST Sinus Tachycardia

4 AF Atrial Flutter

5 SI Sinus Irregularity

6 SVT Supraventricular Tachycardia

7 AT Atrial Tachycardia

8 AVNRT Atrioventricular Node Reentrant Tachycardia

9 AVRT Atrioventricular Reentrant Tachycardia

10 SAAWR Sinus Atrium to Atrial Wandering Rhythm

Acronym Name Full Name

0 1AVB 1 degree atrioventricular block

1 2AVB 2 degree atrioventricular block

2 2AVB1 2 degree atrioventricular block(Type one)

3 2AVB2 2 degree atrioventricular block(Type two)

4 3AVB 3 degree atrioventricular block

5 ABI atrial bigeminy

6 ALS Axis left shift

7 APB atrial premature beats

8 AQW abnormal Q wave

9 ARS Axis right shift

10 AVB atrioventricular block

11 CCR countercolockwise rotation

12 CR colockwise rotation

13 ERV Early repolarization of the ventricles

14 FQRS fQRS Wave

15 IDC Interior differences conduction



rhythm_names_df = pd.read_excel('data/RhythmNames.xlsx')
rhythm_names_df


Out[6]:

In [7]: # Import dictionary for condition names



condition_names_df = pd.read_excel('data/ConditionNames.xlsx')

condition_names_df


Out[7]:



6/14/22, 4:53 PM Heart_Arrhythmias_Data_Analysis

localhost:8888/nbconvert/html/Desktop/Programming/Heart-Arrhythmias-Data-Analysis/Heart_Arrhythmias_Data_Analysis.ipynb?download=false 6/16

Acronym Name Full Name

16 IVB Intraventricular block

17 JEB junctional escape beat

18 JPS J point shift

19 JPT junctional premature beat

20 LBBB left bundle branch block

21 LBBBB left back bundle branch block

22 LFBBB left front bundle branch block

23 LRRI Long RR interval

24 LVH left ventricle hypertrophy

25 LVHV left ventricle high voltage

26 LVQRSAL lower voltage QRS in all lead

27 LVQRSCL lower voltage QRS in chest lead

28 LVQRSLL lower voltage QRS in limb lead

29 MI myocardial infarction

30 MIBW myocardial infraction in back wall

31 MIFW Myocardial infgraction in the front wall

32 MILW Myocardial infraction in the lower wall

33 MISW Myocardial infraction in the side wall

34 PRIE PR interval extension

35 PWC P wave Change

36 QTIE QT interval extension

37 RAH right atrial hypertrophy

38 RAHV right atrial high voltage

39 RBBB right bundle branch block

40 RVH right ventricle hypertrophy

41 STDD ST drop down

42 STE ST extension

43 STTC ST-T Change

44 STTU ST tilt up

45 TWC T wave Change

46 TWO T wave opposite

47 UW U wave

48 VB ventricular bigeminy

49 VEB ventricular escape beat

50 VFW ventricular fusion wave



6/14/22, 4:53 PM Heart_Arrhythmias_Data_Analysis

localhost:8888/nbconvert/html/Desktop/Programming/Heart-Arrhythmias-Data-Analysis/Heart_Arrhythmias_Data_Analysis.ipynb?download=false 7/16

Acronym Name Full Name

51 VPB ventricular premature beat

52 VPE ventricular preexcitation

53 VET ventricular escape trigeminy

54 WAVN Wandering in the atrioventricalualr node

55 WPW WPW

2) Atrial Fibrilation (AFib)

AFib is an arrhythmia in which the atriums beat irregularly and rapidly. Usually AFib on its own is

not deadly, but it increases the risk of stroke, heart failure, and other complications. It is the

most commonly diagnosed arrhythmia and affects millions of Americans.


We will create a new dataframe aimed at predicting AFib from ECG values.

SB       3889

SR       1826

AFIB     1780

ST       1568

SVT       587

AF        445

SA        399

AT        121

AVNRT      16

AVRT        8

SAAWR       7

Name: Rhythm, dtype: int64

AFib Beat PatientAge Gender VentricularRate AtrialRate QRSDuration QTInterval Q

0 True RBBB
TWC

85 MALE 117 234 114 356

1 False TWC 59 FEMALE 52 52 92 432

2 False NONE 20 FEMALE 67 67 82 382

3 False NONE 66 MALE 53 53 96 456

In [8]: # See how many patients have AFib



arrhythmias['Rhythm'].value_counts()

Out[8]:

In [9]: # Create new dataframe aimed at predicting AFib



afib_df = arrhythmias.copy()

afib_df = afib_df.rename(columns={'Rhythm': 'AFib'})

afib_df['AFib'] = (afib_df['AFib'] == 'AFIB')



afib_df


Out[9]:



6/14/22, 4:53 PM Heart_Arrhythmias_Data_Analysis

localhost:8888/nbconvert/html/Desktop/Programming/Heart-Arrhythmias-Data-Analysis/Heart_Arrhythmias_Data_Analysis.ipynb?download=false 8/16

AFib Beat PatientAge Gender VentricularRate AtrialRate QRSDuration QTInterval Q

4 False STDD
STTC

73 FEMALE 162 162 114 252

... ... ... ... ... ... ... ... ...

10641 False NONE 80 FEMALE 196 73 168 284

10642 False NONE 81 FEMALE 162 81 162 294

10643 False NONE 39 MALE 152 92 152 340

10644 False NONE 76 MALE 175 178 128 310

10645 False NONE 75 MALE 117 104 140 312

10646 rows × 15 columns

Logistic Regression

LogisticRegression(max_iter=1000)

In [10]: # Build Logistic Regression model



# Select all numeric ECG values as features

all_features = [

    'VentricularRate',

    'AtrialRate',

    'QRSDuration',

    'QTInterval',

    'QTCorrected',

    'RAxis',

    'TAxis',

    'QRSCount',

    'QOnset',

    'QOffset',

    'TOffset'

]



X = afib_df[all_features]

y = afib_df['AFib']



X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random


model = LogisticRegression(max_iter=1000)
model.fit(X_train, y_train)


Out[10]:

In [11]: # Prints classification report in a convenient format (strictly for binary targe
def print_report(y_test, y_pred):

    # Accuracy

    print(f"accuracy = {sum(y_pred == y_test) / len(y_test)}")

    

    # precision = (True Positives) /  (True Positives + False Positives)

    # recall = (True Positives) / (True Positives + False Negatives)

    # F1-score = 2*((precision*recall)/(precision+recall))

    

    true_pos = false_pos = false_neg = 0




6/14/22, 4:53 PM Heart_Arrhythmias_Data_Analysis

localhost:8888/nbconvert/html/Desktop/Programming/Heart-Arrhythmias-Data-Analysis/Heart_Arrhythmias_Data_Analysis.ipynb?download=false 9/16

accuracy = 0.8474830954169797

precision = 0.6147540983606558

recall = 0.1728110599078341

F1-score = 0.2697841726618705


Interpretation:

The logistic regression model performed very poorly. Even though the model had 84%

accuracy, a recall of 0.173 is far too low for any context, let alone a medical one. This means that

the model was unable to diagnose most of the patients that actually had AFib. This may partially

be due to the fact that, proportionally speaking, there are not many AFib-positive patients in the

dataset.


We will try some other classification models to improve our performance.

SVM

accuracy = 0.8534936138241923

precision = 0.7037037037037037

recall = 0.17511520737327188

F1-score = 0.28044280442804426


Interpretation:

This model also performs poorly.



    for pred, true in zip(y_pred, y_test):

        if true == True and pred == True:

            true_pos += 1

        elif true == False and pred == True:

            false_pos += 1

        elif true == True and pred == False:

            false_neg += 1



    precision = true_pos / (true_pos + false_pos)

    recall = true_pos / (true_pos + false_neg)

    

    print(f'precision = {precision}')

    print(f'recall = {recall}')

    print(f'F1-score = {2 * ((precision*recall) / (precision+recall))}')


In [12]: # Test model

    

y_pred = model.predict(X_test)

print_report(y_test, y_pred)


In [13]: # Build and test SVM model



model = svm.SVC()

model.fit(X_train, y_train)



y_pred = model.predict(X_test)



print_report(y_test, y_pred)




6/14/22, 4:53 PM Heart_Arrhythmias_Data_Analysis

localhost:8888/nbconvert/html/Desktop/Programming/Heart-Arrhythmias-Data-Analysis/Heart_Arrhythmias_Data_Analysis.ipynb?download=false 10/16

KNN

accuracy = 0.8741547708489857

precision = 0.6701030927835051

recall = 0.44930875576036866

F1-score = 0.5379310344827586


Interpretation:

This model performs a bit better but still not that well. However, instead of using all the features

in the dataset, we can improve our performance by optimizing which features we use, and since

KNN performed the best out of the three classifiers, we will try some optimization techniques on

it.

Optimize KNN model

Test different combinations of numeric features and see which set of features produces the best

model.

In [14]: # Build and test KNN model



model = KNeighborsClassifier(n_neighbors=5)

model.fit(X_train, y_train)



y_pred = model.predict(X_test)



print_report(y_test, y_pred)


In [15]: # Given a certain number of features n_features, this function finds the best se
# n_features that produces the highest accuracy model

def optimize_features(n_features, X, y, model, random_state=RANDOM_STATE):

    all_features = X.columns

    feature_combos = combinations(all_features, n_features)

    

    best_acc = 0

    best_features = None

    for features in feature_combos:

        features = list(features)

        

        X_train, X_test, y_train, y_test = train_test_split(X[features], y, test
        model.fit(X_train, y_train)

        y_pred = model.predict(X_test)

        

        acc = accuracy_score(y_test, y_pred)

        if acc > best_acc:

            best_features = features
            best_acc = acc

            

    return best_features, best_acc


In [16]: # Instantiate new KNN model

knn_model = KNeighborsClassifier(n_neighbors=5)

    

# Run the optimize_features function using various numbers of features (ranging 
# NOTE: There are 11 total features, so this takes some time to run




6/14/22, 4:53 PM Heart_Arrhythmias_Data_Analysis

localhost:8888/nbconvert/html/Desktop/Programming/Heart-Arrhythmias-Data-Analysis/Heart_Arrhythmias_Data_Analysis.ipynb?download=false 11/16

Optimal set of 1 feature (accuracy=0.8377160030052592):

['QOffset']


Optimal set of 2 features (accuracy=0.9380165289256198):

['VentricularRate', 'AtrialRate']


Optimal set of 3 features (accuracy=0.9383921863260706):

['VentricularRate', 'AtrialRate', 'QRSCount']


Optimal set of 4 features (accuracy=0.9256198347107438):

['VentricularRate', 'AtrialRate', 'QRSCount', 'QOnset']


Optimal set of 5 features (accuracy=0.9158527422990232):

['VentricularRate', 'AtrialRate', 'QRSCount', 'QOnset', 'QOffset']


Optimal set of 6 features (accuracy=0.9064613072877535):

['VentricularRate', 'AtrialRate', 'QRSCount', 'QOnset', 'QOffset', 'TOffset']


Optimal set of 7 features (accuracy=0.8996994740796393):

['VentricularRate', 'AtrialRate', 'QTInterval', 'QTCorrected', 'QRSCount', 'QOff
set', 'TOffset']


Optimal set of 8 features (accuracy=0.8974455296769346):

['VentricularRate', 'AtrialRate', 'QTInterval', 'QTCorrected', 'QRSCount', 'QOns
et', 'QOffset', 'TOffset']


Optimal set of 9 features (accuracy=0.886175807663411):

['VentricularRate', 'AtrialRate', 'QRSDuration', 'QTInterval', 'QTCorrected', 'Q
RSCount', 'QOnset', 'QOffset', 'TOffset']


Optimal set of 10 features (accuracy=0.8835462058602555):

['VentricularRate', 'AtrialRate', 'QRSDuration', 'QTInterval', 'QTCorrected', 'T
Axis', 'QRSCount', 'QOnset', 'QOffset', 'TOffset']


Optimal set of 11 features (accuracy=0.8741547708489857):

['VentricularRate', 'AtrialRate', 'QRSDuration', 'QTInterval', 'QTCorrected', 'R
Axis', 'TAxis', 'QRSCount', 'QOnset', 'QOffset', 'TOffset']


Based on the results, the optimal model (accuracy=0.938) uses the following 3 features:

VentricularRate

AtrialRate

QRSCount

Now we see how the optimized model performs:

for n in range(1, len(all_features) + 1):

    best_features, best_acc = optimize_features(n, X, y, knn_model)

    print(f'Optimal set of {n} feature{"" if n == 1 else "s"} (accuracy={best_ac
    print(best_features)

    print()


In [17]: best_features = ['VentricularRate', 'AtrialRate', 'QRSCount']



X = afib_df[best_features]

y = afib_df['AFib']



X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random


knn_model = KNeighborsClassifier(n_neighbors=5)




6/14/22, 4:53 PM Heart_Arrhythmias_Data_Analysis

localhost:8888/nbconvert/html/Desktop/Programming/Heart-Arrhythmias-Data-Analysis/Heart_Arrhythmias_Data_Analysis.ipynb?download=false 12/16

accuracy = 0.9383921863260706

precision = 0.8214285714285714

recall = 0.7949308755760369

F1-score = 0.8079625292740047


Interpretation:

This optimized KNN model is much better than the first three models. The accuracy was

improved from 0.874 to 0.938, and more significantly, the recall was improved from 0.449 to

0.795 (the precision is also pretty good). Despite these big improvements in model

performance, I don't think this model is quite ready for clinical implementation because it still

misses quite a few AFib diagnoses; about 20% of patients with AFib were not diagnosed by this

model. It may be a good model when someone's life isn't at risk, but in medicine, the model

should be held to a higher standard. In conclusion, it's a fairly strong model but would require

more improvement to be deployed in the real world.

3) Predicting multiple heart rhythms

So far, I've used classification models to predict a binary target value (has AFib / doesn't have

AFib). AFib is not the most concerning arrhythmia. In fact, generally speaking, arrhythmias of

the ventricles are more deadly than atrial arrhythmias and can often cause cardiac arrest. For

example, while atrial fibrillation often goes unnoticed, ventricular fibrilliation is highly fatal with a

mortality rate of 90-95% if not treated immediately (ventricular fibrillation is the type of cardiac

arrest I had). Some arrhythmias in this data set, such as supraventricular tachycardia (SVT) can

lead to ventricular fibrillation. Thus, it would be useful to build a model that can predict multiple

arrhythmias, both atrial and ventricular. For this, I will use a Decision Tree. I will use some

optimization techniques such as optimizing the feature set (like before) and testing various max

depths for the tree.

Decision Tree

knn_model.fit(X_train, y_train)



y_pred = knn_model.predict(X_test)

        

print_report(y_test, y_pred)


In [18]: # The previous optimize_features function found the optimal set of features give
# features (dimension); this function finds the optimal number of features AND t
# features of that size

def optimize_features_and_dimension(X, y, model, random_state=RANDOM_STATE):   

    best_acc = 0

    best_features = None

    

    for n in range(1, len(X.columns) + 1):

        features, acc = optimize_features(n, X, y, model)

        if acc > best_acc:

            best_features = features
            best_acc = acc




6/14/22, 4:53 PM Heart_Arrhythmias_Data_Analysis

localhost:8888/nbconvert/html/Desktop/Programming/Heart-Arrhythmias-Data-Analysis/Heart_Arrhythmias_Data_Analysis.ipynb?download=false 13/16

['VentricularRate', 'AtrialRate']

max_depth = 9


              precision    recall  f1-score   support


          AF      0.149     0.069     0.095       101

        AFIB      0.785     0.730     0.757       434

          AT      0.000     0.000     0.000        24

       AVNRT      0.000     0.000     0.000         6

        AVRT      0.000     0.000     0.000         1

          SA      0.000     0.000     0.000        89

       SAAWR      0.000     0.000     0.000         2

          SB      0.987     0.990     0.989      1006

          SR      0.750     0.996     0.856       459

          ST      0.905     0.963     0.933       404

         SVT      0.639     0.743     0.687       136


    

    return best_features


In [19]: # Determine optimal feature set for Decision Tree model

# (takes some time to run)



X = arrhythmias[all_features]

y = arrhythmias['Rhythm']



tree_model = DecisionTreeClassifier(random_state=RANDOM_STATE)



best_features = optimize_features_and_dimension(X, y, tree_model)

best_features


Out[19]:

In [20]: # Build and test Decision Tree model



X_train, X_test, y_train, y_test = train_test_split(X[best_features], y, test_si


# Test various max depths from 2 to 10 and select model with best accuracy

best_acc = 0

best_depth = 2

for depth in range(2, 11):

    tree_model.max_depth = depth

    tree_model.fit(X_train, y_train)

    

    y_pred = tree_model.predict(X_test)

    acc = accuracy_score(y_test, y_pred)

    

    if acc > best_acc:

        best_depth = depth

        best_acc = acc



# Build model with optimal max depth

tree_model.max_depth = best_depth

tree_model.fit(X_train, y_train)



y_pred = tree_model.predict(X_test)



print(f'max_depth = {tree_model.max_depth}\n')

print(classification_report(y_test, y_pred, digits=3, zero_division=0))




6/14/22, 4:53 PM Heart_Arrhythmias_Data_Analysis

localhost:8888/nbconvert/html/Desktop/Programming/Heart-Arrhythmias-Data-Analysis/Heart_Arrhythmias_Data_Analysis.ipynb?download=false 14/16

    accuracy                          0.852      2662

   macro avg      0.383     0.408     0.392      2662

weighted avg      0.806     0.852     0.825      2662


Interpretation:

Based on the classification report, it is clear that in many cases the Decision Tree did not do so

well, with an accuracy of 0.852, a weighted average recall of 0.832, and bad F1-scores for most

rhythms. I'm sure this is partly due to the fact that we have so many different arrhythmias but a

relatively small dataset (in some cases we only have a few observations of a particular

arrhythmia); notice how the rhythms with higher support (more observations) have better

performance. For the last four heart rhythms (SB, SR, ST, SVT) the model was not so bad.


Instead of just looking at how accurate the model was in predicting each unique heart rhythm, I

want to see how often the Decision Tree misclassifies an abnormal heart rhythm as normal

(false negative). With previous classifiers, I did this by computing the recall score. However,

since the Decision Tree is a multiclass classifier, I first need to map the heart rhythms to a binary

value (True/False) and then fit the model again. This way, although the Decision Tree won't

predict specific heart rhythms, it would at least predict when the heart rhythm is abnormal.


If you look at the rhythm names below, you will see one called "SR" which stands for "Sinus

Rhythm". SR is a normal heart rhythm, so we will consider this as "doesn't have arrhythmia", i.e. 

False , and we will consider the other rhythms as "has arrhythmia", i.e True . The code below
maps "SR" heart rhythms to False  and all other rhythms to True .

Acronym Name Full Name

0 SB Sinus Bradycardia

1 SR Sinus Rhythm

2 AFIB Atrial Fibrillation

3 ST Sinus Tachycardia

4 AF Atrial Flutter

5 SI Sinus Irregularity

6 SVT Supraventricular Tachycardia

7 AT Atrial Tachycardia

8 AVNRT Atrioventricular Node Reentrant Tachycardia

9 AVRT Atrioventricular Reentrant Tachycardia

10 SAAWR Sinus Atrium to Atrial Wandering Rhythm

In [21]: # See all heart rhythms

rhythm_names_df


Out[21]:

In [22]: # Map rhythms to binary outcome




6/14/22, 4:53 PM Heart_Arrhythmias_Data_Analysis

localhost:8888/nbconvert/html/Desktop/Programming/Heart-Arrhythmias-Data-Analysis/Heart_Arrhythmias_Data_Analysis.ipynb?download=false 15/16

max_depth = 10


accuracy = 0.941397445529677

precision = 0.9990248659190639

recall = 0.9300953245574217

F1-score = 0.9633286318758816


Interpretation:

Now we have a pretty strong tree model with an accuracy of 0.941 and a recall score of 0.930,

compared with those of the multiclass Decision Tree (0.852 for both accuracy and weighted

average recall). The recall score of the binary Decision Tree is also much better than the recall

score of the KNN model (0.795); so, while the KNN model failed to diagnose about 20% of AFib

patients, the binary Decision Tree only failed to recognize about 7% of patients as having

abnormal heart rhythms, even if it couldn't always tell exactly which arrhythmia it was. It may be

unfair to compare the two models since the KNN model was focused on AFib while the binary

Decision Tree clumped all arrhythmias into one group, but in any case the binary Decision Tree

performed pretty well (much better than the multiclass Decision Tree).


Now, ideally, I'd want the accuracy to be at least 95% and the recall to be closer to 100% before

I can comfortably say it is ready for clinical implementation; however, if any of our models are to

be clinically deployed, it is definitely the binary Decision Tree. It performs very well and its

y_binary = (y != 'SR')


In [23]: # Build and test Decision Tree model



binary_tree_model = DecisionTreeClassifier(random_state=RANDOM_STATE)



# Use best_features from before (VentricularRate and AtrialRate)

X_train, X_test, y_train, y_test = train_test_split(X[best_features], y_binary, 


# Test various max depths from 2 to 10 and select model with best accuracy

best_acc = 0

best_depth = 2

for depth in range(2, 11):

    binary_tree_model.max_depth = depth

    binary_tree_model.fit(X_train, y_train)

    

    y_pred = binary_tree_model.predict(X_test)

    acc = accuracy_score(y_test, y_pred)

    

    if acc > best_acc:

        best_depth = depth

        best_acc = acc



# Build model with optimal max depth

binary_tree_model.max_depth = best_depth

binary_tree_model.fit(X_train, y_train)



y_pred = binary_tree_model.predict(X_test)



print(f'max_depth = {binary_tree_model.max_depth}\n')

print_report(y_test, y_pred)




6/14/22, 4:53 PM Heart_Arrhythmias_Data_Analysis

localhost:8888/nbconvert/html/Desktop/Programming/Heart-Arrhythmias-Data-Analysis/Heart_Arrhythmias_Data_Analysis.ipynb?download=false 16/16

numbers would be considered great in many contexts, but I still think it needs a little more

improvement before it can be used medically.


I think it's worth noting that usually the benefit of the Decision Tree is that it can predict many

different classes, as opposed to just one. We did not take advantage of this in the binary

Decision Tree, and instead we made it easier for the model to correctly predict if some

abnormality exists. The model is still worth something, but a truly sophisticated model would be

able to do both: predict multiple heart rhythms AND perform with very high accuracy and recall.

4) Conclusion

To summarize, we developed three promising models:

1. KNN - predicts AFib

accuracy = 0.938

recall = 0.795

Performs with high accuracy, but needs a significantly higher recall score to be

considered for clinical use.

1. Multiclass Decision Tree - predicts multiple heart rhythms

accuracy = 0.852

weighted average recall = 0.852

Overall accuracy is not horrible but should be improved. Performs very poorly for some

rhythms, and pretty well for other rhythms; a larger dataset would improve performance

for more heart rhythms. Not ready for clinical use, unless we cut out the rhythms for

which the model performs poorly.

1. Binary Decision Tree - predicts abnormal heart rhythm

accuracy = 0.941

recall = 0.930

Performs with high accuracy and high recall; best candidate for clinical use. Still needs

a little improvement in recall score (ideally >95%) to truly be ready for clinical use.

In [24]: knn_model  # predicts AFib
tree_model  # predicts multiple heart rhythms

binary_tree_model  # predicts abnormal heart rhythm



pass



